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Abstract. The relationship between Wigner crysvdllization of the classical ionic plasma and 
the liquid-solid transition of alkali metals is examined within the density wave theory of 
freezing. Freezing of the classical plasma on a rigid neulralizing background into the BCC 
structure is first re-evaluated. in view of recent progress in the determination of its thermo- 
dynamic functions by simulation and of the known difficulties of the theory relating to the 
order parameter at the (ZOO) staroireciprocal lattice vectors. Freezing into the FCCStNCtUre 
is also considered in this context and found to be not iavoured. On allowing for long- 
wavelength deformability of the background, the ensuing appearance of a volume change 
on freezing into the BCC structure is accompanied by reduced stability of the fluid phase and 
by an increase in the entropy oi melting. Freezing of alkali metals into the BCC structure is 
next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid 
screened by conduction electrons and requiring that the correct ionic coupling strength at 
liquid-solid coexistence should be approximately reproduced. The ensuing values of the 
volume and entropy changes across the phase transition, as estimated from the theory by 
two alternative routes, are in reasonable agreement with experiment. The order parameters 
of the phase transition, excepting the (200) one, conform rather closely to Gaussian behav- 
iour and yield a Lindemann ratio in reasonable agreement with the empirical value for 
melting of BCC crystals. It is suggested that ionic order at the (200) star in the metal may be 
assisted by medium-range ordering in the conduction electrons, as indicated by differences 
in x-ray and neutron diffraction intensities from the liquid, and/or quite small in the hot 
BCc solid. Such a possible premelting behaviour of BCC met& should be worth testing 
experimentally by diffraction. 

1. Introduction 

The classical one-component plasma (OCP) of point charges on a uniform neutralizing 
background has been considered by many workers as a reference fluid for perturbative 
calculations of thermodynamic and structural properties of liquid metals (Minoo et ai 
1977, Khanna and Cyrot-Lackmann 1979, Ross et a/ 1981, Mon et a/ 1981, Chaturvedi 
ef a[ 1981a, Young 1982, Itami and Shimoji 1984, Iwamatsu ef a[ 1984, Montella et a1 
1984, Pastore and Tosi 1984, Ono and Yokohama 1983, 1987, 1989, Iwamatsu 1985, 
Khanna and Shanker 1985a, b, 1986, Bratkovsky 1988, Lai 1988). This choice of ref- 
erence system is particularly successful for the liquid alkali metals and the main con- 
clusions of direct present interest that have emerged for these metals from the above 
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theoretical work may be summarized as follows. The OCP structure factor at the appro- 
priatevalueofthecouplingstrengthparameter r = ez/akBT, where Tis the temperature 
of the liquid metal and a = ( 4 ~ n / 3 ) - ” ~  in terms of the atomic number density n, repro- 
duces surprisingly well the measured structure factor of real alkali metals near freezing, 
except in the small-angle scattering region. A significantly lower value is obtained for 
the plasma parameter appropriate to the liquid metal when it is determined variationally 
from the Gibbs-Bogoliubov inequality for the Helmholtz free energy, leading to some 
deterioration in the predicted structure factor and to improved agreement with the 
measured values of the excess entropy in the liquid. Finally, an optimized perturbative 
treatment of the electron-screening interactions shows that the modifications induced 
by electronicscreeningin the ionicstructure factor areindeed crucial at longwavelengths 
but are essentially confined to wavenumbers well below the main peak. 

There are also some empirical similarities between the liquid-solid transition of the 
alkali metals and the freezing of the om. The alkalis freeze at standard pressure into 
BCC crystals at temperatures T,,, such that the values of the ion-ion coupling strength 
eZ/akBTm are in the range from 210 for Li and Na to 180 for Cs, whereas crystallization 
of theoc~occursinto the~ccstructure  at r = 178(Brushetu11966,PollockandHansen 
1973, Slattery ef all980,1982, Ogata and Ichimaru 1987, DeWitt et al1990) and into the 
FCC structure at r = 192 (Helfer etaf 1984, DeWitt er al1990), the latter structure being 
clearly metastable. The entropy change on melting of the alkalis is in the range 
ASm/kB = 0.80-0.85 and thus close to that of the OCP (ASm = 0.78kB for the BCC 
crystal). On the other hand, a distinctly small, but finite. volume change on melting 
(Au,/u = 0.016 for Li and 0.025-0.026 for the other alkalis) reflects the finite com- 
pressibility of the metal, whereas the OCP model is commonly taken to have no volume 
change on melting. Measurements of the melting curve of Na under pressure by Ivanov 
er al(l973) indicate that the ionic coupling strength at melting tends to a value of about 
150 a? the volume, change on melting tends to zero with increasing pressure. 

The combination of the forementioned theoretical results for the ionic pair structure 
of the liquid alkalis and of empirical facts relating to their liquid-solid transition suggests 
that a primitive view of the phase transition could be obtained by regarding the liquid 
phase near freezing as a classical ionic plasma embedded on a background which is 
endowed with deformability at long wavelengths to allow for perfect screening of the 
ions by the conduction electrons and for a finite compressibility of the system. Indeed, 
within the framework of the density wave theory of freezing (Ramakrishnan and Yus- 
souff 1977,1979), the phase transition isassociated with the spontaneous appearance of 
order parameters which are driven. at the simplest level of approximation, by the liquid 
compressibility and by the structure factor at wavenumbers corresponding to the various 
starsofreciprocallatticevectors(R~~~)ofthecrystal. Thefirststarof R L V S , ~ . ~ .  the( l l0)  
star for the BCC lattice, approximately corresponds to the main peak in the liquid 
structure factor and thus lies in a wavenumber region such that electronic screening is 
already essentially immaterial in determining the ionic pair structure of the liquid metal. 

The above picture of the liquid-solid transition in alkali metals, although appealing 
because of itssimplicity, needs careful examination. The predictionsof the density wave 
approach for freezing of the OCP on a rigid background (OCP-RB) have been examined 
by a number of workers (Haymet 1984, Rovere and Tosi 1985, Barrat 1987, Barrat et 
a/ 1988, Iyetomi and Ichimaru 1988). These calculations have given evidence for an 
important role of higher-order correlations in the fluid phase in assisting the phase 
transition. In essence, the fluid structure of the OCP, while appropriately soft to modu- 
lation in the (110) star of the RLVs of the BCC lattice, is rigid against modulation in the 
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(200) star, which must therefore be assisted by couplings to other order parameters. 
Extrapolating these considerations to freezing of alkali metals, one expects that special 
attention should be given to the volume change and to the (110) and (ZOO) sets of 
microscopic order parameters. An earlier evaluation of the phase transition in Na 
(Ramakrishnan and Yussouff 1979) has included only the (110) and (211) microscopic 
order parameters, corresponding to the first two peaks of the liquid structure factor. 

The relative behaviour of the liquid metal and of the OCP model at the (ZOO) star is 
particularly worthy of attention in view of the analysis given by Dobson (1978) (see also 
the review by Tamaki (1987)) of x-ray and neutron diffraction intensity data for liquid 
Na and AI, following an earlier proposal by Egelstaff et a1 (1974). Dobson’s analysis 
gave evidence for some medium-range ordering of the conduction electrons in these 
liquid metals, which is revealed by excess x-ray scattering intensity peaking at the 
appropriate (111) and (ZOO) stars. Such ordering is, of course, completely missing in the 
OCP model and may assist the phase transition in the liquid metal. 

A discussion of the relationship between the liquid-solid transition of alkali metals 
and the freezing of the OCP is the object of the present paper. Its layout is briefly as 
follows. Section 2 collects for convenience the essential equations that are needed in our 
calculations, The freezing of the OCP-RB is first re-evaluated in section 3, with a view 
to assessing to some quantitative extent the consequences of omission of non-linear 
couplings between microscopic order parameters and considering also the question of 
the relative stability of the BCC and the FCC structure. The same section then presents 
similar calculations for an OCP with a deformable background (OCP-DE), to which we 
attributethe property ofperfect screening and a mechanical stiffness chosen toreproduce 
the liquid compressibility of the alkalis. Finally, section 4 gives a summary of our main 
results and some concluding remarks. 

2. Theory 

We summarily present in this section the main equations that we shall use in the 
calculations to be reported in the following section, withspecific attention to the liquid- 
solid transition in an OCP-DB. 

The ionic density profile of the crystalline phase is 

p(r) = PI (1 + 7 + E PG e x p ~  . r ) )  (2.1) 
CTO 

where p~ is the density of the fluid phase, pG are the microscopic order parameters 
associated with the reciprocal lattice vectors G, and 7 = (p, - pl)/pl = Au/u, gives the 
percentage volume difference between the tWo phases. Here and in the following, we 
use the subscripts s and I to denote macroscopic properties of the solid and fluid phase, 
respectively. and the symbol A to denote differences between Auid and solid. 

Density functional theory gives the form of the Helmhoilz Cree energy a, 

~ P W I  = k , ~  drm{ln[h3p(r) i  -1) + 1 & p ( r ) w  + FM~)I I (2.2) 

where h is the thermal de Broglie wavelength, F,[p(r)] is the excess free-energy func- 
tional and U(r) is a periodic external potential, whose microscopic Fourier components 
vanish at phase coexistence. The conventional density wave approach to freezing 
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expands the excess free energy of the solid in equation (2.2) around the fluid phase. 
Following Haymet and Oxtoby (1981) and D'Aguanno et a1 (1987), and including 
only second-order terms in the difference p(r)  - pi, the equilibrium condition for the 
microscopic order parameters can be written as 

drexp(iG. r) exp drexp(c,q 

(2.3) 

One also obtains expressions for the difference in chemical potential, i.e. 

and the difference in pressure. i.e. 

AP = plkBT ( -  q + coq + ?CO+ + 6 E cGip,~2 j . (2 .5 )  
G#O 

In these equations, cG are the Fourier components of the Ornstein-Zernike direct 
correlation function c(r) of the fluid at the RLV stars of the solid: 

1 
cG = pI drc(r) exp(iG. r )  = 1 

S(G) 
S ( k )  being the liquid structure factor, and cois the regular part of the Fourier transform 
of c(r) at long wavelengths, which in the OCP model embodies also thermodynamic 
properties to be assigned to the neutralizing background. In our realization of an OCP- 
DB, we assume exact cancellation of the divergent Coulomb term at long wavelengths 
through perfect screening of the ions by the charges in the background. The conditions 
for phase coexistence then are 

A p = 0  

A f  = 0. 

The quantity cowill be related to the isothermal compressibility KTof the full system of 
ions plus background, according to the Ornstein-Zernike relation 

CO = 1 - 1/s(o) = 1 - l/p[kBTKT. (2.9) 

We remark before proceeding that, in the case of an OCP-RB (freezing at constant 
density), the equations derived by previous workers (see, e.g., Rovere and Tosi 1985) 
follow at once from equations (2.3)-(2.5) by setting q = 0. In this case, however, the 
coexistence condition is given by the vanishing of the Helmholtz free-energy difference, 
i.e. 

AFIN = Ap - AP/pi= 0 (2.10) .- 
yielding from equations (2.4) and (2.5), after self-consistent solution of equations (2.3), 
the value rc of the plasma parameter at phase coexistence. Equation (2.4) (with q = 
0) then allows an estimate of the interfacial dipole layer between the two phases. 
Furthermore, the entropy AS, of melting per particle is unambiguously obtained as 
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AS, = -kBT[a(AF/N)/aTIV = kgI'd(AF/NkBT)/dr (2.11) 

evaluated at r = rc. 
Let us return to equations (2.3)-(2.9). As discussed in detail by D'Aguanno er a1 

(1987), this set of equations can be solved by two altemative routes, in relation to the 
determination of the macroscopic parameters of the phase transition. One may impose 
first the condition (2.7) and obtain from equation (2.4) an equation for 9 :  

I + 17 = - drexp coq + 2 cGpGexp(iG . r )  V 'I ( G#O 
(2.12) 

to be solved self-consistently together with equations (2.3) for pG. Coexistence is deter- 
mined in this case by the condition (2.8) and AS,,, can be obtained from the slope of A P  
in equation (2.5) at coexistence, using the basic thermodynamic relation 

ASm= [ksT/(1 + ?)l[a(AP/pik~T)/aTlp + [ d ( l  + V ) l &  (2.13) 

SI in equation (2.13) is the entropy per particle of the fluid phase at freezing. Alterna- 
tively, one may impose first the condition (2.8) to obtain 9 and pG from equations (2.3) 
and (2.5) and subsequently use equation (2.7) to determine coexistence. In this case, 
one obtains from the slopes of A@ at coexistence. 

(2.14) 
(2.15) 

Ofcourse, these alternative routes to the thermodynamicquantities AS, (from equation 
(2.13) or equation (2.14)) and 0, = Au,/u, (from equations (2.12), (2.8) or (2.15)) 
should yield identical results in an exact theory. We shall show below the numerical 
magnitude of the inconsistencies that arise from using an approximate theory. 

Finally, in order to emphasize the relationship between the microscopic order par- 
a m e t e r s ~ ~  and the Debye-Waller factors of the crystal at melting we write 

(2.16) 

where d = (3z2)'I6a is the first-neighbour distance in the Bcc lattice and LG is a star- 
dependent 'Lindemann ratio', which would become independent of G in the harmonic 
approximation for the Braggscatteringintensities from the crystal. The variance of these 
quantities with G tests the accuracy of a Gaussian representation for the single-particle 
density in the crystal at melting, while their magnitude is directly related to Lindemann's 
empirical criterion for melting of BCC crystals. 

pc = (1 + 9 )  exp(-QLiGZd2) 

3. Results 

The common input to all the calculations to be reported in this section is the direct 
correlationfunctionc(k)oftheoc~asafunctionoftheplasmaparameterI'. Weevaluate 
this function by the generalized mean spherical approximation (GMSA) of Chaturvedi et 
a1 (1981b), using as input the new expression for the internal energy of the OCP as a 
functionof rgiven byDeWitt etal(1990). Onlyverysmalldifferencesarefoundinc(k) 
relative to earlier refined calculations in the relevant range of values of l'. Our results at 
I' = 160 are reported for later reference in figure 1, in superposition with the locations 
of the stars of RLVS for both the BCC and the FCC lattice. Show in the same figure are also 



1632 2 Badirkhan et a1 

the results of earlier GMSA calculations (Rovere and Tosi 1985); the slight differences in 
the region of the main minimum of c(k)  represent an improvement in the already 
excellent agreement with the available simulation data. 

Using this input we first solve the set of equations (2.3) for the microscopic order 
parameters pc as functions of r in the case of freezing of the 0Cp.m into the BCC lattice, 
monitoring at the same time the free-energy difference in equation (2.10). The method 
ofsolutionis thesame as that of RovereandTosi (1985). We again findnoself-consistent 
solution of equations (2.3) and (2.10) when the order parameter @w) at the (200) star 
is included among the others to be determined from the appropriate equation (2.3). but 
excluding the latter we obtain satisfactory convergence in the results by including the 
stars of RLVS up to the (433) star, in groups which lie between alternate nodes of c(k).  
Our results for the phase transition show only small numerical differences from theirs, 
owing to the small differences in input, and are reported as a starting point for further 
discussion in the first row of table 1. These results refer to the arbitrary choice p(2W) = 
0, as indicated just above, and the corresponding predicted value for r,(=157) is 
somewhat toolow. Thischoiceisapproximatelyequivalent for theocp-m toanestimate 
of three-body correlations (Iyetomi and Ichimaru 1988) and, in  parallel with their work, 
we find that a very modest allowance for order at the (200) star ( P ( ~ W )  = 0.004) or a 
drastic increase in the corresponding value of qZw) (from -0.50 to -0.13) is needed to 
reproduce the value of r, (=178) from computer simulation data. The predicted value 
of AS, correspondingly decreases to 0.94kB from the value of l.Oks reported in the 
table, thus reducing the discrepancy with the simulation data (ASm = 0.78kB). The last 
part of the first row in table 1 reports the predicted values of the Lindemann ratio at the 
(110). (211) and (220) stars, as well as the average (L) of the Lindemann ratios for the 
starsfrom (310) to (433), the average deviation from their meanvalue being alsoshown. 
Clearly, the single-particle density in the OCP crystal at melting, except its Fourier 
component at the (200) star, conforms rather closely to a Gaussian. The magnitude of 
our Lindemann ratios for the OCP-RB is in good agreement with the simulation data of 
Pollock and Hansen (1973) on the mean square displacement of the ions from their 
lattice sites as a function of r. 

Before proceeding to illustrate the consequences of deformability of the background 
on the above phase transition, we pause to discuss briefly, as far as our approximate 
theoretical approach allows, the question of the relative stability of the FCC and BCC 
structures for the OCP-RB. Reference to the locations of the stars of RLVS for these two 
structures relative to the peaks and valleys of c(k)  in figure 1 indicates that they may be 
competitive, insofar as in both the first RLV star is close to the maximum in the main 
peak of c (k )  and a number of order parameters lie in the region of the subsequent deep 
minimum of this function. The relative stability of the two structures should thus be 
primarily determined by a balance between the higher number of order parameterslying 
in this region for the FCC structure and the more strongly negative value attained by ~ ( ~ 0 0 )  
for freezing into the BCC structure. In the microscopic calculations that we have carried 
out forfreezing into the ~cclattice, we have beenable toobtainaself-consistent solution 
of equations (2.3) and (2.10) only by excluding the order parameter at the (220) star and 
in thiscase we find that r, = 300. These results are broadly consistent with the available 
evidence from computer simulation (DeWitt eta1 1990) in suggesting that freezing into 
the FCC structure is not favoured and confirm an earlier report by Barrat and Hansen 
(1989). 

Let us now turn to present our calculations for freezing of an OCP-DB into the BCC 
lattice and their relation to freezing of the alkali metals. The first issue here is the value 
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to be chosen for the quantity co expressing this deformability, or equivalently for 
the long-wavelength structure factor S(0) = (1 - co)- ’ .  The values of S(0) which are 
available in the literature for liquid alkali metals near freezing (Webber and Stephens 
1968, Greenfield era/ 1971, Huijben and van der Lugt 1979, Waseda 1980) are typically 
in the range 0.0214026. We have carried out calculations for a few values of S(0) over 
this range, finding results that are not significantly different except for the value of the 
relative volumechange 7,. Naturally, this value increases with increasingS(0). We have 
accordingly chosen to report only the results that we obtain for the typical choice S(0) = 
0.023. This quantity is kept fixed duringoursearch for the coexistence point, so that the 
latter is simply specified by the appropriate coupling strength rc for the underlying ionic 
plasma which describes the microscopic ionic pair structure of the liquid metal. 

The results for freezing of the OCP-DB in the second row of table 1 have been obtained 
under the assumption that p(2w) = 0 and are thus directly comparable with those for the 
OCP-RB in the first row. The main qualitative changes which accompany the appearance 
of a finite volume change across the phase transition are 

(a) a decrease in the value of I?,, i.e. reduced stability of the fluid phase as first 
pointed out by Pollock and Hansen (1973), 

(b) an increase in the entropy of melting and 
(c) a narrowing of the single-particle distribution around each lattice site in the hot 

solid. 
We also notice that there is a reasonable amount of internal thermodynamic con- 

sistency in the calculation of AS, and in the calculation of 7, from the conditions (2.7) 
and (2.8), whereas the route leading to a value of 7, via equation (2.15) yields a very 
different result. 
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Among the consequences of background deformability that we have seen above, (b) 
is in qualitative agreement with the data on the entropy of melting of alkali metals 
relative to that of the OCP-RB, while (a) is in disagreement with the evidence that we have 
quoted in section 1 for melting of alkali metals both at atmospheric pressure (r, = 180- 
210 against rc = 178 for the OCP-RB) and under pressure (r, decreasing with decreasing 
volume change across the phase transition). The most likely source of uncertainty in our 
results is, of course, the handling of ordering at the (200) star. Two alternative extreme 
viewpoints could be taken with regard to this failure of the theory. These are 

(i) the (200) order parameter is genuinely small in the hot BCC crystal or 
(ii) microscopic couplings between the ionic order parameters and (in the case of 

alkali metals) between these and electronicorderparametersassist ordering in the (ZOO) 
star. 

Clearly, our approach does not allow us to discriminate between these possibilities, 
which may in fact be simultaneously correct. We examine their separate consequences 
immediately below. 

In the third and fourth rows of table 1 we report the results that we obtain when we 
ask which value of p(2w), or alternatively of qZw), would be compatible with a value of 
rt for the OCP-DB lying in the range appropriate for alkali metals at standard pressure. 
Thesemaybecomparedboth withourearlierresultsinthesecondrow andwithempirical 
data for alkali metals in the last row. The viewpoint (ii) gives overall better agreement 
with the data and it is remarkable that in this case the Lindemann ratio at the (200) star 
near melting falls in the general pattern set by the others. However, in view also of the 
fact that thediffraction patterns from theliquidalkalisshow that theseparation between 
first and second neighbours in the BCC solid has been obliterated on melting, we feel 
that the viewpoint (i) cannot be completely rejected. We also stress that microscopic 
couplings imply an effective change in c(2w) which is more than one order of magnitude 
larger than the error in the liquid metal structure coming from our omission of electronic 
screening (see the values of c(2w) in the last three rows of table 1). 

4. Concluding remarks 

We have examined in this work a simple model for the liquid-solid transition of the 
alkali metals, which is suggested by an interpretation of their ionic pair structure in the 
liquid as thatof aclassical ionicplasmawith long-wavelengthscreening by theconduction 
electrons. We have seen that this simple picture yields, within the quantitative uncer- 
tainties that affect the theory ofthe phase transition, a reasonable account of its thermo- 
dynamic parameters and of the state of order obtaining in the BCC solid at melting. 

We have focused attention in our discussion on the behaviour of the Fourier trans- 
form of the periodic crystalline density at the (ZOO) star of RLVS. The difficulties of the 
theory in thisconnection are qualitatively similar to those already well known for Wigner 
crystallization of the classical plasma on a rigid background. Our results suggest that the 
phase transition in the alkali metals may also be assisted by medium-range ordering of 
the conduction electrons in the liquid, which is indicated by differences of x-ray and 
neutron scattering intensities from liquid Na as analysed by Dobson (1978). However, 
it is also possible that anharmonicity in hot BCC crystals may appear as a premelting 
phenomenon through a rapid decrease in scattering intensity at the (200) Bragg dif- 
fraction spots 



1636 Z Badirkhan et a1 

Acknowledgment 

We acknowledge sponsorship of this work by the Ministcro dell'UniversitA e della 
Ricerca Scientifica e Tecnologica of Italy. 

References 

Barrat J L 1987 Europhys. Lett. 3 523 
Barrat J L and Hansen J P 1989 Simole Molecular Svstem at Verv Hizh Denrim ed A Polian. P Loubevre and .~ 

N Boccara (New York: Plenum) p491 
Barrat J L. Hansen J P and Pastore G 1988 Mol. Phys. 63 747 
Bratkovsky A M 1988 2. Pkys. Chem. 156431 
Brush S G, Sahlin H Land Teller E 1966 3. Chem. Phys. 45 2102 
Chaturvedi D K, Rovere M, Senatore G and Tosi M P 1981a Pkysico B 111 11 
Chaturvedi D K. Senatore G and Tosi M P 1981b Nuouo Cimenro B 62 375 
DAgusnno B. Rovere M and Senatore G 1987 Phys. Ckem. Liquids 16 157 
DeWitt H E, Slattery W L and Stringfellow G S 1990 Strongly Coupled Plmma Physics ed S Ichimaru 

Dobson P J 1978 3. Pkys. C: Solid State Phys. 11 L295 
Egelstaff P A, March N H and McGill N C 1974 Can. 3. Pkys. 52 1651 
Faber T E 1972 Inrroducrion IO rhe Theory ofLiquid Metalr (Cambridge: Cambridge University Press) p 104 
Greenfield A J. Wellendorf J and Wiser N 1971 Phys. Re". A 4 1607 
Haymet A D J 1984 Phys. Reo. Lett. 52 1013 
Haymet A D  J and Oxtoby D W 1981 3. Chem. Phys. 742559 
Helfrr H L, McCrory R Land Van Horn 13 M 1984 3. Srar. Phys. 37 577 
Huijben M J  andvanderLug1 W 1979AcraCqstallogr. A35431 
ItamiTand Shimoji M 19841. Phys. F: Met. Pkys. l4L15 
lvanov V A, Makarenko I N. Nikolaenko A M and Slishov S M 1973 Pkys. Len. 45A 18 
IwamatsuM 1985PhysicaB 138310 
Iwamalsu M, Moore R A and Wmg S 1984 Phys. Len. IOlA 97 
Lyetomi H and Ichimaru S 1988 Phys. Reo. B 38 6761 
Khanna S N and Cyrot-Lackmann F 1979 J.  Physique Leu 40 145 
Khanna K N and Shanker G 1985a Physica B 133 176 
- I985b Pkys. Chem. Liquids 1569 
- 1986Phvs. StatwSolidi b137K107 

(Amsterdam: Elsevier) p635 

Lai S K 1988 P i p  Reo. A 385707 
Minoo H. Deutsch C and Hansen J P 19773. Physisue Leu. 38 L191 
.\lo" K K.  Gann G md Stroud D 1981 Ph?r. Re; A 212115 
M o n t e l l ~ N . S ~ n a t o r c G s n d T o s i ~ i P 1 9 8 1 P l ~ ~ r r ~ . o B  12422 
Oplla S and lchimsru S 1987 Ph)r. Re" A 365451 
OnoSand Yokoyama I 1984 J Phvs. F Mer. Ph!s. 142909 
- 1987 3. Plzjs. F: Mer. P h p  17 L1Jl 
- 1969 Phjrica B 154 309 
P.btore G 3nd Tori hl P 1 9 s  Phjrrcn B I24 383 
PollockEL3ndHansenJ P1973PIiyr. Rrri. A83110 
Ramakrihnan T V 2nd l'ussoull hl I 9 7  Solid Slore Commun 21 359 - 
Ross \l. Dc\\itt H E 3nd Hubbard W B 1981 Pl,)r Reu. A 24 1016 
Roacre M and Tosi hl  P 1985 3 P h u  C. Solid Siare Phys 18 3445 
Slar tery \ \ 'L .D~olcnGDrrndDe~i t tHE 1 9 8 0 P h . ~  Reo A21?08i - 1982 Phpr. Reo. A 262255 
TamakiS1987Can J Phjr 65286 
Wsscda Y 1980 The Srrucrure ofNon.Crysrolline Morenals (Neu York' 4lcGr3u-Hill) p 252 
\\ e b k r  G hi B and Stephens R W B 1966 Ph)r,colArousltcs \01 JB, rd W P Mison (New York: .4cadcmic) 

Y o u n g W H 1 9 8 2 J . P h j ~  F.M<t .  Phji. 12L19 

1979 P h p  Rev. B 192775 

p 53 


